Exercice $\mathrm{n}^{\circ} 1$ (6 points)

Une urne contient dix jetons indiscernables au toucher :

- Quatre portent le nombre 1
- Trois portent la lettre a
- Trois portent la lettre b

Une épreuve consiste à tirer simultanément et au hasard trois jetons de l'urne.

1) Calculer la probabilité de chacun des évènements suivants:

A «Chacun des trois jetons tirés porte le nombre 1»
B « Obtenir un seul jeton qui porte la lettre a»
C « Obtenir au moins un jeton qui porte une lettre»
2) Soit X l'aléa numérique qui à chaque épreuve associe le nombre de jetons portant la lettre a.
a) Justifier que les valeurs prises par X sont $0 ; 1 ; 2$ et 3 .
b) Déterminer la loi de probabilité de X.
c) Calculer l'espérance mathématique et la variance de X.

Exercice ${ }^{\circ} 2$ (7 points)

Soit la suite $\left(U_{n}\right)$ définie par $\left\{\begin{array}{l}U_{0}=\ln (2) \\ U_{n+1}=\frac{U_{n}}{2}+\frac{\ln (2)}{4}\end{array}\right.$ pour $n \in \mathbb{N}$.

1) a) Vérifier que $U_{1}=\frac{3}{4} \ln (2)$ et que $U_{2}=\frac{5}{8} \ln (2)$.
b) Montrer que la suite $\left(U_{n}\right)$ n'est ni géométrique ni arithmétique.
2) Soit la suite $\left(V_{n}\right)$ définie sur IN par $V_{n}=U_{n}-\frac{1}{2} \ln (2)$
a) Vérifier que $V_{0}=\frac{1}{2} \ln (2)$.
b) Montrer que $\left(V_{n}\right)$ est une suite géométrique de raison $\frac{1}{2}$ et exprimer V_{n} en fonction de n.
c) Montrer que $\left(V_{n}\right)$ est décroissante.
3) a) Montrer que pour tout entier naturel $n, U_{n}=\frac{1}{2} \ln (2)+\frac{\ln (2)}{2^{n+1}}$.
b) Calculer alors la limite de la suite $\left(U_{n}\right)$.

Exercice $\mathbf{n}^{\circ} 3$ (7 points)

Soit la f fonction définie sur IR par $f(x)=e^{2-x}$ et C sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

1) a) Calculer $f(1)$ et $f(2)$.
b) Déterminer les limites de f en $-\infty$ et en $+\infty$.
c) Dresser le tableau de variations de f.
2) a) Montrer que f réalise une bijection de IR sur un intervalle I qu'on précisera.
b) Montrer que l'équation $f(x)=2+\ln 2$ admet dans $I R$ une unique solution α et que $\alpha \neq 1$.
3) On a représenté dans l'annexe ci-jointe la courbe \mathbf{C}.
a) Construire dans le même repère la courbe C ' de la fonction réciproque de f.
b) Placer, dans le repère $(0, \vec{i}, \vec{j})$, le point $E(\alpha ; 0)$.
c) Hachurer la partie \mathbf{P} du plan limitée par la courbe \mathbf{C}, l'axe des abscisses et les droites d'équations $x=\alpha$ et $x=2$.
4) a) Montrer que la fonction F définie sur IR par $F(x)=-f(x)$ est une primitive de f sur IR.
b) Montrer que l'aire A de la partie P est égale à $f(\alpha)-f(2)$ u.a.
c) Déduire que $A=1+\ln 2$.

Épreuve: Mathématiques Section: Sport
Annexe à rendre avec la copie

